

Welcome to SerialPort’s documentation!

Get Started

	Install

	Basic usage (Kotlin)
	Build SerialPort instance

	Search device

	Connect the device

	Receive message

	Send a message

	Basic usage (Java)
	Build SerialPort instance

	Search device

	Connect the device

	Receive message

	Send a message

	Server
	Build instance

	Open server

	Close server

	Set the server discoverable state

	Disconnect

	Send

Tutorials (Kotlin)

	Configuration
	Debug mode

	Auto reconnect

	Ignore unnamed devices

	Automatically open the search interface

	Automatic conversion of hexadecimal data

	Built-in search page to choose connection method

	Configurator

	Set search duration

	Discovery and connect
	Built-in interface

	Use a custom interface

	Search device

	Connect the device

	Received and send
	Set data format

	Receive message

	Send a message

	Toast
	Configuration method

	Optional configuration items

	Tools
	Print UUID and its attributes

	String2hex

	Bytes2string

	String2bytes

Tutorials (Java)

	Configuration
	Debug mode

	Auto reconnect

	Ignore unnamed devices

	Automatically open the search interface

	Automatic conversion of hexadecimal data

	Built-in search page to choose connection method

	Configurator

	Set search duration

	Discovery and connect
	Built-in interface

	Use a custom interface

	Search device

	Connect the device

	Received and send
	Set data format

	Receive message

	Send a message

	Toast
	Configuration method

	Optional configuration items

	Tools
	Print UUID and its attributes

	String2hex

	Bytes2string

	String2bytes

Notes

	FREQUENTLY ASKED QUESTIONS
	Feature support

	Common problem

	How to solve other problems?

	Changelog
	4.2.0 was released in 7/6/2022:

	4.1.9 was released in 9/5/2022:

	4.1.8 was released in 14/4/2022:

	Sponsor

Switch Language

	English

	简体中文

Install

Edit the Build.gradle file and add the following dependencies.

dependencies {
 implementation 'cn.shanyaliux.serialport:serialport:4.2.0'
}

If you need to use 4.1.6 and below, do as follows:

	Add JitPack repository
Add the JitPack repository to your build file

 allprojects {
 repositories {
 ...
 maven { url 'https://jitpack.io' }
 }
 }

	add dependencies

dependencies {
 implementation 'com.gitee.Shanya:SerialPortSample:4.1.6' //Chinese warehouse
 implementation 'com.github.Shanyaliux:SerialPortSample:4.1.6' //Foreign warehouse
}

Basic usage (Kotlin)

Build SerialPort instance

val serialPort = SerialPortBuilder.build(this)

Search device

Use the method doDiscovery(context) to search for devices:

serialPort.doDiscovery(this)

Use the methods getPairedDevicesListBD() and getUnPairedDevicesListBD() to get search results:

serialPort.getPairedDevicesListBD()		//Get a list of paired devices
serialPort.getUnPairedDevicesListBD()	//Get a list of unpaired devices

If the search is not over, the list of unpaired devices may be empty or incomplete.

Connect the device

Setting the correct UUID is an essential step in order to successfully connect the device and complete the communication.

Set legacy device UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the legacy device:

SerialPort.setLegacyUUID("00001101-0000-1000-8000-00805F9B34FB")

For traditional devices generally, you can use the default UUID without setting UUID.

Set BLE device UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the BLE device:

SerialPort.setBleUUID("0000ffe1-0000-1000-8000-00805f9b34fb")

In most cases, BLE devices need to set UUID. For specific UUID, you can check the manual or consult the seller.

In addition, you can also use the method printPossibleBleUUID() to print out a feasible UUID, and try it yourself:

serialPort.printPossibleBleUUID()

Establish connection

Use the method openDiscoveryActivity() to open the built-in search page and select a device to connect to:

serialPort.openDiscoveryActivity()

**What if you don’t want to use the built-in search page? **

You can set up a custom search page or connect directly using the device address. See Use a custom interface

Receive message

Use the method setReceivedDataCallback(receivedDataCallback) to set up a received message listener:

serialPort.setReceivedDataCallback { data ->

 }

In addition to this, you can also configure the listener when building the instance:

val serialPort = SerialPortBuilder
 .setReceivedDataCallback { data ->

 }
 .build(this)

Send a message

Send a message using the method sendData(data):

serialPort.sendData("Hello World")

**At this point, you can quickly develop a serial port application that can complete basic sending and receiving data. Of course, SerialPort has many more functions, please continue to read the documentation. **

Basic usage (Java)

Build SerialPort instance

SerialPort serialPort = SerialPortBuilder.INSTANCE.build(this);

Search device

Use the method doDiscovery(context) to search for devices:

serialPort.doDiscovery(this);

Use the methods getPairedDevicesListBD() and getUnPairedDevicesListBD() to get search results:

serialPort.getPairedDevicesListBD();	//Get a list of paired devices
serialPort.getUnPairedDevicesListBD();	//Get a list of unpaired devices

If the search is not over, the list of unpaired devices may be empty or incomplete.

Connect the device

Setting the correct UUID is an essential step in order to successfully connect the device and complete the communication.

Set legacy device UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the legacy device:

SerialPort.Companion.setLegacyUUID("00001101-0000-1000-8000-00805F9B34FB");

For traditional devices generally, you can use the default UUID without setting UUID.

Set BLE device UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the BLE device:

SerialPort.Companion.setBleUUID("0000ffe1-0000-1000-8000-00805f9b34fb");

In most cases, BLE devices need to set UUID. For specific UUID, you can check the manual or consult the seller.

In addition, you can also use the method printPossibleBleUUID() to print out a feasible UUID, and try it yourself:

serialPort.printPossibleBleUUID()

Establish connection

Use the method openDiscoveryActivity() to open the built-in search page and select a device to connect to:

serialPort.openDiscoveryActivity();

**What if you don’t want to use the built-in search page? **

You can set up a custom search page or connect directly using the device address. See Use a custom interface

Receive message

Use the method setReceivedDataCallback(receivedDataCallback) to set up a received message listener:

serialPort.setReceivedDataCallback((data) -> {

 return null;
 });

In addition to this, you can also configure the listener when building the instance:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setReceivedDataCallback((data) -> {

 return null;
 })
 .build(this);

Send a message

Send a message using the method sendData(data):

serialPort.sendData("Hello World");

**At this point, you can quickly develop a serial port application that can complete basic sending and receiving data. Of course, SerialPort has many more functions, please continue to read the documentation. **

Server

Now, an Android server can be built to implement Bluetooth communication between two Androids. (Currently only supports single device connection)

Build instance

val serialPortServer = SerialPortServerBuilder
 .setServerName("SerialPortServer")
 .setServerUUID("00001101-0000-1000-8000-00805F9B34FB")
 .setServerReceivedDataCallback {

 }
 .setServerConnectStatusCallback { status, bluetoothDevice ->

 }
 .build(this)

	setServerName Set server name

	setServerUUID Set the UUID of the server, the UUID of the traditional device needs to be set to the same as this when the client connects

	setServerReceivedDataCallback The server receives message monitoring

	setServerConnectStatusCallback Server connection status monitoring

	status Connection Status

	bluetoothDevice Connected device, null when status is false

Open server

Only after the service is opened, the client can connect to the server.

serialPortServer.openServer()

Close server

serialPortServer.closeServer()

Set the server discoverable state

By default, if the server is turned on, it will be automatically set to be discoverable, and if the server is turned off, it will be set to be invisible.

setServerDiscoverable(status)

	status is of type Boolean, indicating the discoverable status

Disconnect

Actively disconnect from the client

serialPortServer.disconnect()

Send

serialPortServer.sendData("Hello")

Configuration

Debug mode

When debugging the program, we can turn on the debugging mode, which will print a variety of log information, and turn off this switch when the APP is officially released to reduce resource overhead. The settings are as follows:

val serialPort = SerialPortBuilder
 .isDebug(true)
 .build(this)

Auto reconnect

Reconnect at startup

After this function is enabled, an automatic reconnection will be performed when the instance is constructed, and the reconnection object is the last successfully connected device. The settings are as follows:

val serialPort = SerialPortBuilder
 .autoConnect(true)
 .build(this)

Automatic reconnection at intervals

After this function is turned on, it will automatically reconnect once at intervals (the time can be set by yourself), and the reconnection object is the last successfully connected device. The settings are as follows:

val serialPort = SerialPortBuilder
			//The second parameter is the interval time,
 //if not specified, the default is 10000Ms
 .setAutoReconnectAtIntervals(true, 10000)
 .build(this)

Ignore unnamed devices

When this feature is turned on, devices with empty device names are automatically ignored when searching for devices. The settings are as follows:

val serialPort = SerialPortBuilder
 .isIgnoreNoNameDevice(true)
 .build(this)

For some Bluetooth devices, the device name may be empty when connecting for the first time. Please enable this function according to the situation.

Automatically open the search interface

After enabling this function, when sending data, if it finds that the device is not connected, it will automatically open the built-in search page. The settings are as follows:

val serialPort = SerialPortBuilder
 .autoOpenDiscoveryActivity(true)
 .build(this)

Automatic conversion of hexadecimal data

When this function is turned on, when the received data is in hexadecimal, it will be automatically converted into a string. The settings are as follows:

val serialPort = SerialPortBuilder
 .autoHexStringToString(true)
 .build(this)

Of course, you can also do the conversion manually using the method hexStringToString(hexString):

string = serialPort.hexStringToString(hexString)

Built-in search page to choose connection method

After enabling this function, when you click the device to connect on the built-in page, you can manually select the connection method. But please note that if your device does not support the connection method you selected, the connection will not be successful.

val serialPort = SerialPortBuilder
 .setOpenConnectionTypeDialogFlag(true)
 .build(this)

Configurator

Configurator You can pass the above multiple configurations into SerialPortBuilder at one time.

val config = SerialPortConfig()
val serialPort = SerialPortBuilder
 .setConfig(config)
 .build(this)

The parameters that can be set by the configurator are shown in the following table (bold indicates the default value):

	parameter name
	value

	debug
	(bool) true / false

	UUID_LEGACY
	(string) 00001101-0000-1000-8000-00805F9B34FB

	UUID_BLE
	(string) 00001101-0000-1000-8000-00805F9B34FB

	UUID_BLE_READ
	(string) none

	UUID_BLE_SEND
	(string) none

	autoConnect
	(bool) true / false

	autoReconnect
	(bool) true / false

	reconnectAtIntervals
	(int) 10000

	autoOpenDiscoveryActivity
	(bool) true / false

	autoHexStringToString
	(bool) true / false

	readDataType
	SerialPort.READ_STRING / SerialPort.READ_HEX

	sendDataType
	SerialPort.SEND_STRING / SerialPort.SEND_HEX

	ignoreNoNameDevice
	(bool) true / false

	openConnectionTypeDialogFlag
	(bool) true / false

Among them, please refer to the precautions for setting UUID: ble device set UUID

Set search duration

Use this method to configure how long to search for devices:

//The parameter is time, in milliseconds
val serialPort = SerialPortBuilder
 .setDiscoveryTime(10000)
 .build(this)

Discovery and connect

Built-in interface

In order to help develop serial communication applications more conveniently and quickly, we have integrated a necessary search and connection page internally. Use the method openDiscoveryActivity() to open a built-in interface:

serialPort.openDiscoveryActivity()

Use a custom interface

Of course, in more cases our search and connection pages need to be more beautiful and customizable. Then, you can use the method serialPort.openDiscoveryActivity(intent) to open a custom page:

//Here you can modify it to your custom Activity
val intent = Intent(this,DiscoveryActivity::class.java)
serialPort.openDiscoveryActivity(intent)

Search device

Start search

Use the method doDiscovery(context) to start searching for devices:

serialPort.doDiscovery(this)

Stop searching

Use the method cancelDiscovery(context) to start searching for devices:

serialPort.cancelDiscovery(this)

Monitor search status

Use the method setDiscoveryStatusWithTypeCallback(discoveryStatusWithTypeCallback) or setDiscoveryStatusCallback(discoveryStatusCallback) to set a search status listener:

//status is search status
serialPort.setDiscoveryStatusCallback{ status ->

}
//Search for listeners with status band type
//deviceType = SerialPort.DISCOVERY_BLE Search for BLE devices
//deviceType = SerialPort.DISCOVERY_LEGACY Search traditional types
//status is search status
serialPort.setDiscoveryStatusWithTypeCallback { deviceType, status ->

}

In addition to this, you can also configure the listener when building the instance:

//status is search status
val serialPort = SerialPortBuilder
 .setDiscoveryStatusCallback { status ->

 }
 .build(this)
//Search for listeners with status band type
//deviceType = SerialPort.DISCOVERY_BLE Search for BLE devices
//deviceType = SerialPort.DISCOVERY_LEGACY Search traditional types
//status is search status
val serialPort = SerialPortBuilder
 .setDiscoveryStatusWithTypeCallback { deviceType, status ->

 }
 .build(this)

Get search results

Use the methods getPairedDevicesListBD() and getUnPairedDevicesListBD() to get search results:

serialPort.getPairedDevicesListBD()		//Get a list of paired devices
serialPort.getUnPairedDevicesListBD()	//Get a list of unpaired devices

If the search does not end, the acquired list of unpaired devices may be empty or incomplete.

Connect the device

Setting the correct UUID is an essential step in order to successfully connect the device and complete the communication.

Traditional equipment

Set UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the legacy device:

SerialPort.setLegacyUUID("00001101-0000-1000-8000-00805F9B34FB")

For traditional devices generally, you can use the default UUID without setting UUID.

Establish connection

Use the method connectLegacyDevice(address) to establish a connection with a legacy device:

serialPort.connectLegacyDevice("98:D3:32:21:67:D0")

BLE device

Set UUID

Use the static method setBleUUID(uuid) of SerialPort to set the UUID of the BLE device, or use setBleSendUUID and setBleReadUUID to set the send and receive UUID independently:

SerialPort.setBleUUID("0000ffe1-0000-1000-8000-00805f9b34fb")
SerialPort.setBleReadUUID("0000ffe1-0000-1000-8000-00805f9b34fb")
SerialPort.setBleSendUUID("0000ffe1-0000-1000-8000-00805f9b34fb")

If the UUID is set independently, the one set independently shall prevail.

In most cases, BLE devices need to set UUID. For specific UUID, you can check the manual or consult the seller.

In addition, you can also use the method printPossibleBleUUID() to print out the feasible UUID, see for details: print uuid and its attributes

Establish connection

Use the method connectBle(address) to establish a connection to a legacy device:

serialPort.connectBle("98:D3:32:21:67:D0")

Disconnect

Use the method disconnect() to establish a connection to a legacy device:

serialPort.disconnect()

Monitor connection status

Use the method setConnectionStatusCallback(connectionStatusCallback) to set a connection status listener:

serialPort.setConnectStatusCallback { status, bluetoothDevice ->

}

In addition to this, you can also configure the listener when building the instance:

val serialPort = SerialPortBuilder
 .setConnectionStatusCallback { status, bluetoothDevice ->

 }
 .build(this)

The bluetoothDevice used here is the official class, which contains various information about the Bluetooth device. see details official documentation [https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothDevice]

In previous versions, a custom Device class was used (deprecated), which contains: device name, device address, and device type. It is implemented as follows:

@Deprecated("This class is deprecated in version 4.0.0 and will directly use the official BluetoothDevice class instead")
data class Device(
 val name:String,
 val address:String,
 val type:Int = 0
)

BLE can work callback

This callback is triggered after the BLE device is successfully connected and can work, and can be used to configure the automatic sending of messages after the connection is successful. The method of use is as follows:

serialPort.setBleCanWorkCallback {

}

In addition to this, you can also configure the listener when building the instance:

val serialPort = SerialPortBuilder
 .setBleCanWorkCallback {

			}
 .build(this)

Received and send

Set data format

Use the methods setReadDataType(type) and setSendDataType(type) to format the technique data:

Set the received message format

//SerialPort.READ_HEX hex
//SerialPort.READ_STRING string
//If not set, the default string form
serialPort.setReadDataType(SerialPort.READ_HEX)

In addition to this, you can also set the received data format when building the instance:

//SerialPort.READ_HEX hex
//SerialPort.READ_STRING string
//If not set, the default string form
val serialPort = SerialPortBuilder
 .setReadDataType(SerialPort.READ_HEX)
 .build(this)

Set the send data format

//SerialPort.SEND_HEX hex
//SerialPort.SEND_STRING string
//If not set, the default string form
serialPort.setSendDataType(SerialPort.SEND_HEX)

In addition to this, you can also set the send data format when building the instance:

//SerialPort.SEND_HEX hex
//SerialPort.SEND_STRING string
//If not set, the default string form
val serialPort = SerialPortBuilder
 .setSendDataType(SerialPort.SEND_HEX)
 .build(this)

Currently, the data sending and receiving for BLE devices does not support the setting format, only the string format is supported. If you really need the hexadecimal data format, you can temporarily implement it by referring to the processing method of traditional equipment.

Reference code link: HexStringToString [https://gitee.com/Shanya/SerialPortSample/blob/master/serialport/src/main/java/world/shanya/serialport/tools/SerialPortToolsByKotlin.kt#L112]、StringToHex [https://gitee.com/Shanya/SerialPortSample/blob/master/serialport/src/main/java/world/shanya/serialport/tools/SerialPortToolsByKotlin.kt#L199]

Receive message

string and hex

Use the method setReceivedDataCallback(receivedDataCallback) to set up a received message listener:

serialPort.setReceivedDataCallback { data ->

 }

In addition to this, you can also configure the listener when building the instance:

val serialPort = SerialPortBuilder
 .setReceivedDataCallback { data ->

 }
 .build(this)

Byte array

When receiving a message, you can also choose to obtain a byte array as follows:

serialPort.setReceivedBytesCallback { bytes ->

 }

In addition to this, you can also configure the listener when building the instance:

val serialPort = SerialPortBuilder
 .setReceivedBytesCallback { bytes ->

 }
 .build(this)

Send a message

Send a message using the method sendData(data):

String

serialPort.sendData("Hello World")

hex

serialPort.sendData("0C FF")

All hexadecimals should be two digits, with 0 in front of the less than two digits, case-insensitive.

BLE device send bytes

Now, BLE device support send bytes

serialPort.sendData(bytes)

Toast

Configuration method

//whether to display
SerialPortToast.connectSucceeded.status = true
//prompt content (content is a string id)
SerialPortToast.connectSucceeded.content = R.string.connectSucceededToast
//Display duration Toast.LENGTH_SHORT or Toast.LENGTH_LONG
SerialPortToast.connectSucceeded.time = Toast.LENGTH_SHORT

Optional configuration items

	item
	describe
	defaults

	connectSucceeded
	When the connection is successful
	Connection succeeded

	connectFailed
	When the connection fails
	Connection failed

	disconnect
	When disconnected
	Disconnect

	connectFirst
	Send data when no device is connected
	Please connect the device first

	disconnectFirst
	Perform the connect operation after the device is connected
	Please disconnect first

	permission
	Ask whether to enable location permission
	Please enable location permission first

	hexTip
	When sending hexadecimal, the data format is incorrect
	Please keep two digits for each hexadecimal data entered, and the insufficient is 0 in the front

	openBluetoothSucceeded
	When the bluetooth is turned on successfully
	Bluetooth turned on successfully

	openBluetoothFailed
	When turning on bluetooth fails
	Failed to turn on bluetooth

Tools

Print UUID and its attributes

If we don’t know the UUID of the current BLE device, we can call the function printPossibleBleUUID to print out the optional UUID of the currently connected device

Where Properties is a binary number, and the meaning of each bit is shown in the following table:

	value (in hexadecimal)
	mean

	0x01
	broadcastable

	0x02
	readable

	0x04
	can be written without response

	0x08
	can be written

	0x10
	supports notification

	0x20
	supports indication

	0x40
	supports write with signature

	0x80
	has extended properties

String2hex

/**
 * Convert string to hexadecimal
 * @param str String to convert
 * @return hex array
 */
DataUtil.string2hex("Hello")

Bytes2string

/**
 * The byte array is converted into a string according to the required encoding format
 * @param bytes byte array to convert
 * @param charsetName Required encoding format
 * @return Converted string
 */
SerialPortTools.bytes2string(bytes, "GBK")

String2bytes

/**
 * The string is converted into a byte array according to the required encoding format
 * @param string String to convert
 * @param charsetName Required encoding format
 * @return Converted byte array
 */
SerialPortTools.bytes2string("Hello", "GBK")

Configuration

Debug mode

When debugging the program, we can turn on the debugging mode, which will print a variety of log information, and turn off this switch when the APP is officially released to reduce resource overhead. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .isDebug(true)
 .build(this);

Auto reconnect

Reconnect at startup

After this function is enabled, an automatic reconnection will be performed when the instance is constructed, and the reconnection object is the last successfully connected device. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .autoConnect(true)
 .build(this);

Automatic reconnection at intervals

After this function is turned on, it will automatically reconnect once at intervals (the time can be set by yourself), and the reconnection object is the last successfully connected device. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 			//The second parameter is the interval time,
 			//if not specified, the default is 10000Ms
 .setAutoReconnectAtIntervals(true, 10000)
 .build(this);

Ignore unnamed devices

When this feature is turned on, devices with empty device names are automatically ignored when searching for devices. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .isIgnoreNoNameDevice(true)
 .build(this);

For some Bluetooth devices, the device name may be empty when connecting for the first time. Please enable this function according to the situation.

Automatically open the search interface

After enabling this function, when sending data, if it finds that the device is not connected, it will automatically open the built-in search page. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .autoOpenDiscoveryActivity(true)
 .build(this);

Automatic conversion of hexadecimal data

When this function is turned on, when the received data is in hexadecimal, it will be automatically converted into a string. The settings are as follows:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .autoHexStringToString(true)
 .build(this);

Of course, you can also do the conversion manually using the method hexStringToString(hexString):

string = serialPort.hexStringToString(hexString)

Built-in search page to choose connection method

After enabling this function, when you click the device to connect on the built-in page, you can manually select the connection method. But please note that if your device does not support the connection method you selected, the connection will not be successful.

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setOpenConnectionTypeDialogFlag(true)
 .build(this);

Configurator

Configurator You can pass the above multiple configurations into SerialPortBuilder at one time.

SerialPortConfig config = new SerialPortConfig();
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setConfig(config)
 .build(this);

The parameters that can be set by the configurator are shown in the following table (bold indicates the default value):

	parameter name
	value

	debug
	(bool) true / false

	UUID_LEGACY
	(string) 00001101-0000-1000-8000-00805F9B34FB

	UUID_BLE
	(string) 00001101-0000-1000-8000-00805F9B34FB

	UUID_BLE_READ
	(string) none

	UUID_BLE_SEND
	(string) none

	autoConnect
	(bool) true / false

	autoReconnect
	(bool) true / false

	reconnectAtIntervals
	(int) 10000

	autoOpenDiscoveryActivity
	(bool) true / false

	autoHexStringToString
	(bool) true / false

	readDataType
	SerialPort.READ_STRING / SerialPort.READ_HEX

	sendDataType
	SerialPort.SEND_STRING / SerialPort.SEND_HEX

	ignoreNoNameDevice
	(bool) true / false

	openConnectionTypeDialogFlag
	(bool) true / false

Among them, please refer to the precautions for setting UUID: ble device set UUID

Set search duration

Use this method to configure how long to search for devices:

//The parameter is time, in milliseconds
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setDiscoveryTime(10000)
 .build(this);

Discovery and connect

Built-in interface

In order to help develop serial communication applications more conveniently and quickly, we have integrated a necessary search and connection page internally. Use the method openDiscoveryActivity() to open a built-in interface:

serialPort.openDiscoveryActivity();

Use a custom interface

Of course, in more cases our search and connection pages need to be more beautiful and customizable. Then, you can use the method serialPort.openDiscoveryActivity(intent) to open a custom page:

//Here you can modify it to your custom Activity
Intent intent = new Intent(this, DiscoveryActivity.class);
serialPort.openDiscoveryActivity(intent);

Search device

Start search

Use the method doDiscovery(context) to start searching for devices:

serialPort.doDiscovery(this);

Stop searching

Use the method cancelDiscovery(context) to start searching for devices:

serialPort.cancelDiscovery(this);

Monitor search status

Use the method setDiscoveryStatusWithTypeCallback(discoveryStatusWithTypeCallback) or setDiscoveryStatusCallback(discoveryStatusCallback) to set a search status listener:

//status is search status
serialPort.setDiscoveryStatusCallback((status) ->{

 return null;
});
//Search for listeners with status band type
//deviceType = SerialPort.DISCOVERY_BLE Search for BLE devices
//deviceType = SerialPort.DISCOVERY_LEGACY Search traditional types
//status is search status
serialPort.setDiscoveryStatusWithTypeCallback((deviceType, status) -> {

return null;
});

In addition to this, you can also configure the listener when building the instance:

//status is search status
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setDiscoveryStatusCallback((status) -> {

 return null;
 })
 .build(this);
//Search for listeners with status band type
//deviceType = SerialPort.DISCOVERY_BLE Search for BLE devices
//deviceType = SerialPort.DISCOVERY_LEGACY Search traditional types
//status is search status
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setDiscoveryStatusWithTypeCallback((deviceType, status) -> {

 return null;
 })
 .build(this);

Get search results

Use the methods getPairedDevicesListBD() and getUnPairedDevicesListBD() to get search results:

serialPort.getPairedDevicesListBD();	//Get a list of paired devices
serialPort.getUnPairedDevicesListBD();	//Get a list of unpaired devices

If the search does not end, the acquired list of unpaired devices may be empty or incomplete.

Connect the device

Setting the correct UUID is an essential step in order to successfully connect the device and complete the communication.

Traditional equipment

Set UUID

Use the static method setLegacyUUID(uuid) of SerialPort to set the UUID of the legacy device:

SerialPort.Companion.setLegacyUUID("00001101-0000-1000-8000-00805F9B34FB");

For traditional devices generally, you can use the default UUID without setting UUID.

Establish connection

Use the method connectLegacyDevice(address) to establish a connection with a legacy device:

serialPort.connectLegacyDevice("98:D3:32:21:67:D0");

BLE device

Set UUID

Use the static method setBleUUID(uuid) of SerialPort to set the UUID of the BLE device, or use setBleSendUUID and setBleReadUUID to set the send and receive UUID independently:

SerialPort.Companion.setBleUUID("0000ffe1-0000-1000-8000-00805f9b34fb");
SerialPort.Companion.setBleReadUUID("0000ffe1-0000-1000-8000-00805f9b34fb");
SerialPort.Companion.setBleSendUUID("0000ffe1-0000-1000-8000-00805f9b34fb");

If the UUID is set independently, the one set independently shall prevail.

In most cases, BLE devices need to set UUID. For specific UUID, you can check the manual or consult the seller.

In addition, you can also use the method printPossibleBleUUID() to print out the feasible UUID, see for details: print uuid and its attributes

Establish connection

Use the method connectBle(address) to establish a connection to a legacy device:

serialPort.connectBle("98:D3:32:21:67:D0");

Disconnect

Use the method disconnect() to establish a connection to a legacy device:

serialPort.disconnect();

Monitor connection status

Use the method setConnectionStatusCallback(connectionStatusCallback) to set a connection status listener:

serialPort.setConnectionStatusCallback((status,bluetoothDevice)->{

	return null;
});

In addition to this, you can also configure the listener when building the instance:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setConnectionStatusCallback((status, bluetoothDevice) -> {

 return null;
 })
 .build(this);

The bluetoothDevice used here is the official class, which contains various information about the Bluetooth device. see details official documentation [https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothDevice]

In previous versions, a custom Device class was used (deprecated), which contains: device name, device address, and device type. It is implemented as follows:

@Deprecated("This class is deprecated in version 4.0.0 and will directly use the official BluetoothDevice class instead")
data class Device(
 val name:String,
 val address:String,
 val type:Int = 0
)

BLE can work callback

This callback is triggered after the BLE device is successfully connected and can work, and can be used to configure the automatic sending of messages after the connection is successful. The method of use is as follows:

serialPort.setBleCanWorkCallback(() -> {

 return null;
 });

In addition to this, you can also configure the listener when building the instance:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setBleCanWorkCallback(() -> {

 return null;
 })
 .build(this);

Received and send

Set data format

Use the methods setReadDataType(type) and setSendDataType(type) to format the technique data:

Set the received message format

//SerialPort.READ_HEX hex
//SerialPort.READ_STRING string
//If not set, the default string form
serialPort.setReadDataType(SerialPort.READ_HEX);

In addition to this, you can also set the received data format when building the instance:

//SerialPort.READ_HEX hex
//SerialPort.READ_STRING string
//If not set, the default string form
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setReadDataType(SerialPort.READ_HEX)
 .build(this);

Set the send data format

//SerialPort.SEND_HEX hex
//SerialPort.SEND_STRING string
//If not set, the default string form
serialPort.setSendDataType(SerialPort.SEND_HEX);

In addition to this, you can also set the send data format when building the instance:

//SerialPort.SEND_HEX hex
//SerialPort.SEND_STRING string
//If not set, the default string form
SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setSendDataType(SerialPort.SEND_HEX)
 .build(this);

Currently, the data sending and receiving for BLE devices does not support the setting format, only the string format is supported. If you really need the hexadecimal data format, you can temporarily implement it by referring to the processing method of traditional equipment.

Reference code link: HexStringToString [https://gitee.com/Shanya/SerialPortSample/blob/master/serialport/src/main/java/world/shanya/serialport/tools/SerialPortToolsByKotlin.kt#L112]、StringToHex [https://gitee.com/Shanya/SerialPortSample/blob/master/serialport/src/main/java/world/shanya/serialport/tools/SerialPortToolsByKotlin.kt#L199]

Receive message

String and hex

Use the method setReceivedDataCallback(receivedDataCallback) to set up a received message listener:

serialPort.setReceivedDataCallback((data) -> {

 return null;
 });

In addition to this, you can also configure the listener when building the instance:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setReceivedDataCallback((data) -> {

 return null;
 })
 .build(this);

Byte array

When receiving a message, you can also choose to obtain a byte array as follows:

serialPort.setReceivedBytesCallback((bytes) -> {

 return null;
 });

In addition to this, you can also configure the listener when building the instance:

SerialPort serialPort = SerialPortBuilder.INSTANCE
 .setReceivedBytesCallback((bytes) -> {

 return null;
 })
 .build(this);

Send a message

Send a message using the method sendData(data):

String

serialPort.sendData("Hello World");

hex

serialPort.sendData("0C FF");

All hexadecimals should be two digits, with 0 in front of the less than two digits, case-insensitive.

BLE device send bytes

Now, BLE device support send bytes

serialPort.sendData(bytes);

Toast

Configuration method

//whether to display
SerialPortToast.INSTANCE.getConnectSucceeded().setStatus(true);
//prompt content (content is a string id)
SerialPortToast.INSTANCE.getConnectSucceeded().setContent(R.string.connectSucceededToast);
//Display duration Toast.LENGTH_SHORT or Toast.LENGTH_LONG
SerialPortToast.INSTANCE.getConnectSucceeded().setTime(Toast.LENGTH_SHORT);

Optional configuration items

	item
	describe
	defaults

	connectSucceeded
	When the connection is successful
	Connection succeeded

	connectFailed
	When the connection fails
	Connection failed

	disconnect
	When disconnected
	Disconnect

	connectFirst
	Send data when no device is connected
	Please connect the device first

	disconnectFirst
	Perform the connect operation after the device is connected
	Please disconnect first

	permission
	Ask whether to enable location permission
	Please enable location permission first

	hexTip
	When sending hexadecimal, the data format is incorrect
	Please keep two digits for each hexadecimal data entered, and the insufficient is 0 in the front

	openBluetoothSucceeded
	When the bluetooth is turned on successfully
	Bluetooth turned on successfully

	openBluetoothFailed
	When turning on bluetooth fails
	Failed to turn on bluetooth

Tools

Print UUID and its attributes

If we don’t know the UUID of the current BLE device, we can call the function printPossibleBleUUID to print out the optional UUID of the currently connected device

Where Properties is a binary number, and the meaning of each bit is shown in the following table:

	value (in hexadecimal)
	mean

	0x01
	broadcastable

	0x02
	readable

	0x04
	can be written without response

	0x08
	can be written

	0x10
	supports notification

	0x20
	supports indication

	0x40
	supports write with signature

	0x80
	has extended properties

String2hex

/**
 * Convert string to hexadecimal
 * @param str String to convert
 * @return hex array
 */
DataUtil.INSTANCE.string2hex("Hello");

Bytes2string

/**
 * The byte array is converted into a string according to the required encoding format
 * @param bytes byte array to convert
 * @param charsetName Required encoding format
 * @return Converted string
 */
SerialPortTools.bytes2string(bytes, "GBK");

String2bytes

/**
 * The string is converted into a byte array according to the required encoding format
 * @param string String to convert
 * @param charsetName Required encoding format
 * @return Converted byte array
 */
SerialPortTools.string2bytes("Hello", "GBK");

FREQUENTLY ASKED QUESTIONS

Feature support

Does it support BLE devices?

Certainly，SerialPort fully supports BLE devices since version 4.0.0.

Is there an automatic reconnection mechanism?

Yes, it can be set to reconnect at startup, or it can be automatically reconnected at intervals.See auto reconnect

Common problem

Why is the list of available devices for a custom page empty?

After Android 6.0, you must give the positioning permission to search for available devices.

Why does the BLE device connect successfully, but cannot send and receive messages, and sometimes an exception occurs?

After the BLE device is successfully connected, it is necessary to set the correct UUID for normal communication.For the specific setting method, see Set BLE device UUID

How to solve other problems?

Enable debug mode

Turn on debug mode to view the printed log information. See debug mode

Take advantage of a powerful search engine

[image: _images/google.png]

[image: _images/baidu.png]

Issues

If the above methods still do not solve the problem, Please open issues [https://github.com/Shanyaliux/SerialPortSample/issues].

Changelog

4.2.0 was released in 7/6/2022:

	[Fix] Some compilation warnings about bluetooth permissions

	[Modify] Upgrade Kotlin and Gradle versions

	[Modify] Mark ConnectionResultCallback obsolete

	[Feature] Added Ble device to send byte array

	[Feature] Added Ble device can work callback

	[Feature] Added Server

4.1.9 was released in 9/5/2022:

	[Fix] When the sendUUID is incorrect, it crashes

4.1.8 was released in 14/4/2022:

	fix autoOpenDiscoveryActivity is always true

	DiscoveryActivity add English

	add setDiscoveryTime

Sponsor

SerialPort is an open source project licensed under the Apache-2.0 license. It is completely free to use, but your sponsorship can make SerialPort more healthy and stable.

If you recognize the author’s efforts or SerialPort really helped you, please go to Gitee [https://gitee.com/Shanya/SerialPortSample] and GitHub [https://github.com/Shanyaliux/SerialPortSample] to click star to encourage it. In addition, if you have enough pockets, you can scan the following sponsorship code to become a SerialPort sponsor:

[image: _images/wx.png]

English

简体中文

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/image/baidu.png
Bai'&'ﬁlﬁ

_images/google.png
Google

Q= Google LR, SE@A— L

_images/wx.png
‘FHRARZ, EEEBRIEE!

_images/baidu.png
Bai'&'ﬁlﬁ

_static/image/google.png
Google

Q= Google LR, SE@A— L

nav.xhtml

 Table of Contents

 		
 Welcome to SerialPort’s documentation!

 		
 Install

 		
 Basic usage (Kotlin)

 		
 Build SerialPort instance

 		
 Search device

 		
 Connect the device

 		
 Set legacy device UUID

 		
 Set BLE device UUID

 		
 Establish connection

 		
 Receive message

 		
 Send a message

 		
 Basic usage (Java)

 		
 Build SerialPort instance

 		
 Search device

 		
 Connect the device

 		
 Set legacy device UUID

 		
 Set BLE device UUID

 		
 Establish connection

 		
 Receive message

 		
 Send a message

 		
 Server

 		
 Build instance

 		
 Open server

 		
 Close server

 		
 Set the server discoverable state

 		
 Disconnect

 		
 Send

 		
 Configuration

 		
 Debug mode

 		
 Auto reconnect

 		
 Reconnect at startup

 		
 Automatic reconnection at intervals

 		
 Ignore unnamed devices

 		
 Automatically open the search interface

 		
 Automatic conversion of hexadecimal data

 		
 Built-in search page to choose connection method

 		
 Configurator

 		
 Set search duration

 		
 Discovery and connect

 		
 Built-in interface

 		
 Use a custom interface

 		
 Search device

 		
 Start search

 		
 Stop searching

 		
 Monitor search status

 		
 Get search results

 		
 Connect the device

 		
 Traditional equipment

 		
 BLE device

 		
 Disconnect

 		
 Monitor connection status

 		
 BLE can work callback

 		
 Received and send

 		
 Set data format

 		
 Set the received message format

 		
 Set the send data format

 		
 Receive message

 		
 string and hex

 		
 Byte array

 		
 Send a message

 		
 String

 		
 hex

 		
 BLE device send bytes

 		
 Toast

 		
 Configuration method

 		
 Optional configuration items

 		
 Tools

 		
 Print UUID and its attributes

 		
 String2hex

 		
 Bytes2string

 		
 String2bytes

 		
 Configuration

 		
 Debug mode

 		
 Auto reconnect

 		
 Reconnect at startup

 		
 Automatic reconnection at intervals

 		
 Ignore unnamed devices

 		
 Automatically open the search interface

 		
 Automatic conversion of hexadecimal data

 		
 Built-in search page to choose connection method

 		
 Configurator

 		
 Set search duration

 		
 Discovery and connect

 		
 Built-in interface

 		
 Use a custom interface

 		
 Search device

 		
 Start search

 		
 Stop searching

 		
 Monitor search status

 		
 Get search results

 		
 Connect the device

 		
 Traditional equipment

 		
 BLE device

 		
 Disconnect

 		
 Monitor connection status

 		
 BLE can work callback

 		
 Received and send

 		
 Set data format

 		
 Set the received message format

 		
 Set the send data format

 		
 Receive message

 		
 String and hex

 		
 Byte array

 		
 Send a message

 		
 String

 		
 hex

 		
 BLE device send bytes

 		
 Toast

 		
 Configuration method

 		
 Optional configuration items

 		
 Tools

 		
 Print UUID and its attributes

 		
 String2hex

 		
 Bytes2string

 		
 String2bytes

 		
 FREQUENTLY ASKED QUESTIONS

 		
 Feature support

 		
 Does it support BLE devices?

 		
 Is there an automatic reconnection mechanism?

 		
 Common problem

 		
 Why is the list of available devices for a custom page empty?

 		
 Why does the BLE device connect successfully, but cannot send and receive messages, and sometimes an exception occurs?

 		
 How to solve other problems?

 		
 Enable debug mode

 		
 Take advantage of a powerful search engine

 		
 Issues

 		
 Changelog

 		
 4.2.0 was released in 7/6/2022:

 		
 4.1.9 was released in 9/5/2022:

 		
 4.1.8 was released in 14/4/2022:

 		
 Sponsor

 		
 English

 		
 简体中文

_static/image/qq.png
SerialPortUtil HARZK...

H-ETHE, AN,
[Jel

_static/image/qq_wx.png
SerialPortUtil HAR3z..

9383660

Ly Ry
-, MAE.

J Yelo
Shanya K255

FEARS, BIEZBREEE! ~

_static/image/logo.png
SerialPort

_static/image/logo192.png

_static/image/wx.png
‘FHRARZ, EEEBRIEE!

